so3.scad 2.7 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182
  1. // so3
  2. use <linalg.scad>
  3. function rodrigues_so3_exp(w, A, B) = [
  4. [1.0 - B*(w[1]*w[1] + w[2]*w[2]), B*(w[0]*w[1]) - A*w[2], B*(w[0]*w[2]) + A*w[1]],
  5. [B*(w[0]*w[1]) + A*w[2], 1.0 - B*(w[0]*w[0] + w[2]*w[2]), B*(w[1]*w[2]) - A*w[0]],
  6. [B*(w[0]*w[2]) - A*w[1], B*(w[1]*w[2]) + A*w[0], 1.0 - B*(w[0]*w[0] + w[1]*w[1])]
  7. ];
  8. function so3_exp(w) = so3_exp_rad(w/180*PI);
  9. function so3_exp_rad(w) =
  10. combine_so3_exp(w,
  11. w*w < 1e-8
  12. ? so3_exp_1(w*w)
  13. : w*w < 1e-6
  14. ? so3_exp_2(w*w)
  15. : so3_exp_3(w*w));
  16. function combine_so3_exp(w,AB) = rodrigues_so3_exp(w,AB[0],AB[1]);
  17. // Taylor series expansions close to 0
  18. function so3_exp_1(theta_sq) = [
  19. 1 - 1/6*theta_sq,
  20. 0.5
  21. ];
  22. function so3_exp_2(theta_sq) = [
  23. 1.0 - theta_sq * (1.0 - theta_sq/20) / 6,
  24. 0.5 - 0.25/6 * theta_sq
  25. ];
  26. function so3_exp_3_0(theta_deg, inv_theta) = [
  27. sin(theta_deg) * inv_theta,
  28. (1 - cos(theta_deg)) * (inv_theta * inv_theta)
  29. ];
  30. function so3_exp_3(theta_sq) = so3_exp_3_0(sqrt(theta_sq)*180/PI, 1/sqrt(theta_sq));
  31. function rot_axis_part(m) = [m[2][1] - m[1][2], m[0][2] - m[2][0], m[1][0] - m[0][1]]*0.5;
  32. function so3_ln(m) = 180/PI*so3_ln_rad(m);
  33. function so3_ln_rad(m) = so3_ln_0(m,
  34. cos_angle = rot_cos_angle(m),
  35. preliminary_result = rot_axis_part(m));
  36. function so3_ln_0(m, cos_angle, preliminary_result) =
  37. so3_ln_1(m, cos_angle, preliminary_result,
  38. sin_angle_abs = sqrt(preliminary_result*preliminary_result));
  39. function so3_ln_1(m, cos_angle, preliminary_result, sin_angle_abs) =
  40. cos_angle > sqrt(1/2)
  41. ? sin_angle_abs > 0
  42. ? preliminary_result * asin(sin_angle_abs)*PI/180 / sin_angle_abs
  43. : preliminary_result
  44. : cos_angle > -sqrt(1/2)
  45. ? preliminary_result * acos(cos_angle)*PI/180 / sin_angle_abs
  46. : so3_get_symmetric_part_rotation(
  47. preliminary_result,
  48. m,
  49. angle = PI - asin(sin_angle_abs)*PI/180,
  50. d0 = m[0][0] - cos_angle,
  51. d1 = m[1][1] - cos_angle,
  52. d2 = m[2][2] - cos_angle
  53. );
  54. function so3_get_symmetric_part_rotation(preliminary_result, m, angle, d0, d1, d2) =
  55. so3_get_symmetric_part_rotation_0(preliminary_result,angle,so3_largest_column(m, d0, d1, d2));
  56. function so3_get_symmetric_part_rotation_0(preliminary_result, angle, c_max) =
  57. angle * unit(c_max * preliminary_result < 0 ? -c_max : c_max);
  58. function so3_largest_column(m, d0, d1, d2) =
  59. d0*d0 > d1*d1 && d0*d0 > d2*d2
  60. ? [d0, (m[1][0]+m[0][1])/2, (m[0][2]+m[2][0])/2]
  61. : d1*d1 > d2*d2
  62. ? [(m[1][0]+m[0][1])/2, d1, (m[2][1]+m[1][2])/2]
  63. : [(m[0][2]+m[2][0])/2, (m[2][1]+m[1][2])/2, d2];
  64. __so3_test = [12,-125,110];
  65. echo(UNITTEST_so3=norm(__so3_test-so3_ln(so3_exp(__so3_test))) < 1e-8);