| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324 |
- // NOTE: this code uses
- // * experimental let() syntax
- // * experimental list comprehension syntax
- // * search() bugfix and feature addition
- // * vector min()/max()
- // Calculates the convex hull of a set of points.
- // The result is expressed in point indices.
- // If the points are collinear (or 2d), the result is a convex
- // polygon [i1,i2,i3,...], otherwise a triangular
- // polyhedron [[i1,i2,i3],[i2,i3,i4],...]
- function hull(points) =
- !(len(points) > 0) ? [] :
- len(points[0]) == 2 ? convexhull2d(points) :
- len(points[0]) == 3 ? convexhull3d(points) : [];
- epsilon = 1e-9;
- // 2d version
- function convexhull2d(points) =
- len(points) < 3 ? [] : let(
- a=0, b=1,
- c = find_first_noncollinear([a,b], points, 2)
- ) c == len(points) ? convexhull_collinear(points) : let(
- remaining = [ for (i = [2:len(points)-1]) if (i != c) i ],
-
- polygon = area_2d(points[a], points[b], points[c]) > 0 ? [a,b,c] : [b,a,c]
- ) convex_hull_iterative_2d(points, polygon, remaining);
- // Adds the remaining points one by one to the convex hull
- function convex_hull_iterative_2d(points, polygon, remaining, i_=0) = i_ >= len(remaining) ? polygon :
- let (
- // pick a point
- i = remaining[i_],
- // find the segments that are in conflict with the point (point not inside)
- conflicts = find_conflicting_segments(points, polygon, points[i])
- // no conflicts, skip point and move on
- ) len(conflicts) == 0 ? convex_hull_iterative_2d(points, polygon, remaining, i_+1) : let(
- // find the first conflicting segment and the first not conflicting
- // conflict will be sorted, if not wrapping around, do it the easy way
- polygon = remove_conflicts_and_insert_point(polygon, conflicts, i)
- ) convex_hull_iterative_2d(
- points,
- polygon,
- remaining,
- i_+1
- );
- function find_conflicting_segments(points, polygon, point) = [
- for (i = [0:len(polygon)-1]) let(j = (i+1) % len(polygon))
- if (area_2d(points[polygon[i]], points[polygon[j]], point) < 0)
- i
- ];
- // remove the conflicting segments from the polygon
- function remove_conflicts_and_insert_point(polygon, conflicts, point) =
- conflicts[0] == 0 ? let(
- nonconflicting = [ for(i = [0:len(polygon)-1]) if (!contains(conflicts, i)) i ],
- new_indices = concat(nonconflicting, (nonconflicting[len(nonconflicting)-1]+1) % len(polygon)),
- polygon = concat([ for (i = new_indices) polygon[i] ], point)
- ) polygon : let(
- prior_to_first_conflict = [ for(i = [0:1:min(conflicts)]) polygon[i] ],
- after_last_conflict = [ for(i = [max(conflicts)+1:1:len(polygon)-1]) polygon[i] ],
- polygon = concat(prior_to_first_conflict, point, after_last_conflict)
- ) polygon;
- // 3d version
- function convexhull3d(points) =
- len(points) < 3 ? [ for(i = [0:1:len(points)-1]) i ] : let (
- // start with a single triangle
- a=0, b=1, c=2,
- plane = plane(points,a,b,c),
-
- d = find_first_noncoplanar(plane, points, 3)
- ) d == len(points) ? /* all coplanar*/ let (
- pts2d = [ for (p = points) plane_project(p, points[a], points[b], points[c]) ],
- hull2d = convexhull2d(pts2d)
- ) hull2d : let(
- remaining = [for (i = [3:len(points)-1]) if (i != d) i],
- // Build an initial tetrahedron
- // swap b,c if d is in front of triangle t
- bc = in_front(plane, points[d]) ? [c,b] : [b,c],
- b = bc[0], c = bc[1],
-
- triangles = [
- [a,b,c],
- [d,b,a],
- [c,d,a],
- [b,d,c],
- ],
- // calculate the plane equations
- planes = [ for (t = triangles) plane(points, t[0], t[1], t[2]) ]
- ) convex_hull_iterative(points, triangles, planes, remaining);
- // A plane equation (normal, offset)
- function plane(points, a, b, c) = let(
- normal = unit(cross(points[c]-points[a], points[b]-points[a]))
- ) [
- normal,
- normal * points[a]
- ];
- // Adds the remaining points one by one to the convex hull
- function convex_hull_iterative(points, triangles, planes, remaining, i_=0) = i_ >= len(remaining) ? triangles :
- let (
- // pick a point
- i = remaining[i_],
- // find the triangles that are in conflict with the point (point not inside)
- conflicts = find_conflicts(points[i], planes),
- // for all triangles that are in conflict, collect their halfedges
- halfedges = [
- for(c = conflicts)
- for(i = [0:2]) let(j = (i+1)%3)
- [triangles[c][i], triangles[c][j]]
- ],
- // find the outer perimeter of the set of conflicting triangles
- horizon = remove_internal_edges(halfedges),
- // generate a new triangle for each horizon halfedge together with the picked point i
- new_triangles = [ for (h = horizon) concat(h,i) ],
- // calculate the corresponding plane equations
- new_planes = [ for (t = new_triangles) plane(points, t[0], t[1], t[2]) ]
- ) convex_hull_iterative(
- points,
- // remove the conflicting triangles and add the new ones
- concat(remove_elements(triangles, conflicts), new_triangles),
- concat(remove_elements(planes, conflicts), new_planes),
- remaining,
- i_+1
- );
- function convexhull_collinear(points) = let(
- n = points[1] - points[0],
- a = points[0],
- points1d = [ for(p = points) (p-a)*n ],
- min_i = min_index(points1d),
- max_i = max_index(points1d)
- ) [ min_i, max_i ];
- function min_index(values,min_,min_i_,i_) =
- i_ == undef ? min_index(values,values[0],0,1) :
- i_ >= len(values) ? min_i_ :
- values[i_] < min_ ? min_index(values,values[i_],i_,i_+1)
- : min_index(values,min_,min_i_,i_+1);
- function max_index(values,max_,max_i_,i_) =
- i_ == undef ? max_index(values,values[0],0,1) :
- i_ >= len(values) ? max_i_ :
- values[i_] > max_ ? max_index(values,values[i_],i_,i_+1)
- : max_index(values,max_,max_i_,i_+1);
- function remove_elements(array, elements) = [
- for (i = [0:len(array)-1])
- if (!search(i, elements))
- array[i]
- ];
- function remove_internal_edges(halfedges) = [
- for (h = halfedges)
- if (!contains(halfedges, reverse(h)))
- h
- ];
- function plane_project(point, a, b, c) = let(
- u = b-a,
- v = c-a,
- n = cross(u,v),
- w = cross(n,u),
- relpoint = point-a
- ) [relpoint * u, relpoint * w];
- function plane_unproject(point, a, b, c) = let(
- u = b-a,
- v = c-a,
- n = cross(u,v),
- w = cross(n,u)
- ) a + point[0] * u + point[1] * w;
- function reverse(arr) = [ for (i = [len(arr)-1:-1:0]) arr[i] ];
- function contains(arr, element) = search([element],arr)[0] != [] ? true : false;
- function find_conflicts(point, planes) = [
- for (i = [0:len(planes)-1])
- if (in_front(planes[i], point))
- i
- ];
- function find_first_noncollinear(line, points, i) =
- i >= len(points) ? len(points) :
- collinear(points[line[0]],
- points[line[1]],
- points[i]) ? find_first_noncollinear(line, points, i+1)
- : i;
- function find_first_noncoplanar(plane, points, i) =
- i >= len(points) ? len(points) :
- coplanar(plane, points[i]) ? find_first_noncoplanar(plane, points, i+1)
- : i;
- function distance(plane, point) = plane[0] * point - plane[1];
- function in_front(plane, point) = distance(plane, point) > epsilon;
- function coplanar(plane, point) = abs(distance(plane,point)) <= epsilon;
- function unit(v) = v/norm(v);
- function area_2d(a,b,c) = (
- a[0] * (b[1] - c[1]) +
- b[0] * (c[1] - a[1]) +
- c[0] * (a[1] - b[1])) / 2;
- function collinear(a,b,c) = abs(area_2d(a,b,c)) < epsilon;
- function spherical(cartesian) = [
- atan2(cartesian[1], cartesian[0]),
- asin(cartesian[2])
- ];
- function cartesian(spherical) = [
- cos(spherical[1]) * cos(spherical[0]),
- cos(spherical[1]) * sin(spherical[0]),
- sin(spherical[1])
- ];
- /// TESTCODE
- phi = 1.618033988749895;
- testpoints_on_sphere = [ for(p =
- [
- [1,phi,0], [-1,phi,0], [1,-phi,0], [-1,-phi,0],
- [0,1,phi], [0,-1,phi], [0,1,-phi], [0,-1,-phi],
- [phi,0,1], [-phi,0,1], [phi,0,-1], [-phi,0,-1]
- ])
- unit(p)
- ];
- testpoints_spherical = [ for(p = testpoints_on_sphere) spherical(p) ];
- testpoints_circular = [ for(a = [0:15:360-epsilon]) [cos(a),sin(a)] ];
- testpoints_coplanar = let(u = unit([1,3,7]), v = unit([-2,1,-2])) [ for(i = [1:10]) rands(-1,1,1)[0] * u + rands(-1,1,1)[0] * v ];
- testpoints_collinear_2d = let(u = unit([5,3])) [ for(i = [1:20]) rands(-1,1,1)[0] * u ];
- testpoints_collinear_3d = let(u = unit([5,3,-5])) [ for(i = [1:20]) rands(-1,1,1)[0] * u ];
- testpoints2d = 20 * [for (i = [1:10]) concat(rands(-1,1,2))];
- testpoints3d = 20 * [for (i = [1:50]) concat(rands(-1,1,3))];
- // All points are on the sphere, no point should be red
- translate([-50,0]) visualize_hull(20*testpoints_on_sphere);
- // 2D points
- translate([50,0]) visualize_hull(testpoints2d);
- // All points on a circle, no point should be red
- translate([0,50]) visualize_hull(20*testpoints_circular);
- // All points 3d but collinear
- translate([0,-50]) visualize_hull(20*testpoints_coplanar);
- // Collinear
- translate([50,50]) visualize_hull(20*testpoints_collinear_2d);
- // Collinear
- translate([-50,50]) visualize_hull(20*testpoints_collinear_3d);
- // 3D points
- visualize_hull(testpoints3d);
- module visualize_hull(points) {
- hull = hull(points);
-
- %if (len(hull) > 0 && len(hull[0]) > 0)
- polyhedron(points=points, faces = hull);
- else
- polyhedron(points=points, faces = [hull]);
-
- for (i = [0:len(points)-1]) assign(p = points[i], $fn = 16) {
- translate(p) {
- if (hull_contains_index(hull,i)) {
- color("blue") sphere(1);
- } else {
- color("red") sphere(1);
- }
- }
- }
-
- function hull_contains_index(hull, index) =
- search(index,hull,1,0) ||
- search(index,hull,1,1) ||
- search(index,hull,1,2);
- }
|